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Random walks on a Suctuating lattice: A renormalization group approach applied in one dimension
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We study the problem of a random walk on a lattice in which bonds connecting nearest-neighbor sites
open and close randomly in time, a situation often encountered in Auctuating media. We present a sim-

ple renormalization group technique to solve for the effective diffusive behavior at long times. For one-
dimensional 1attices we obtain better quantitative agreement with simulation data than earlier effective
medium results. Our technique works in principle in any dimension, although the amount of computa-
tion required rises with the dimensionality of the lattice.

PACS number{s): 05.40.+j, 05.60.+w, 87.10.+e

I. INTRODUCTION

Many naturally occurring diffusive processes do not
take place within a static medium. Influences of medium
fluctuations on transport properties have been encoun-
tered, particularly in polymeric host media ([1,2]; for an
extensive review, see [3]). To illustrate such a situation in
the particular field of molecular biophysics, let us consid-
er the migration of a ligand to a protein active site [4,5], a
problem with which we have been concerned recently [6].
Several proteins (e.g., myoglobin) have their active site
not on the surface, but inside the protein matrix. The
ligand, in the case of myoglobin, a small gas molecule like
oxygen or carbon monoxide, has to reach its binding site,
the heme pocket, by somehow crossing the protein ma-
trix. An analysis of the conformational structure of myo-
globin [7] suggests that no paths from the outside of the
protein to the heme pocket are present when a protein is
frozen into a static, average conformation. However, the
protein conformational structure is not static-
conformational fluctuations are present at physiological
temperatures and, in fact, are crucial for the proper func-
tioning of the protein [4,7]. There is a good deal of evi-
dence that ligand diffusion cannot take place without lo-
cal volume fluctuations within the protein. If myoglobin
within a glycerol-water solvent, for example, is cooled to
temperatures well below the glass transition for the
solvent-protein system ( =200 K), then no ligand
diffusion within the protein is observed [8]; presumably, a
glass transition freezes out conformational fluctuations of
the protein, at least on the time scales of the experiment,
thereby prohibiting diffusion. Furthermore, the ligand
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almost certainly affects the neighborhood through which
it is moving. Therefore, a correct treatment of ligand
diffusion in myoglobin must take into account that local
pathways for the ligand will appear and disappear ran-
domly.

We are therefore led to consider the problem of macro-
scopic transport in a medium in which channels are ran-
domly appearing and disappearing over a time scale v.. A
particular instance of such a situation is the case of a ran-
dom walk that jumps from node to node on a lattice
where the nearest-neighbor site connectivity fluctuates
randomly in time. Simpler still, consider a lattice where
each nearest-neighbor link opens and closes randomly,
or, equivalently, where the nearest-neighbor hopping ma-
trix element fluctuates between zero and some nonzero
value. This last case, although special, is of great interest
and wide applicability. A simplified version of this pro-
cess has been used to study ionic conduction in polymeric
solid electrolytes and protonic diffusion in hydrogen-
bonded networks, among other things [1,3]. It is also
clearly relevant to ligand diffusion in biomolecules such
as hemoglobin [4], although a quantitative theoretical
study of this situation has not been made.

For concreteness, first consider the static percolation
problem (r= ao ) on a lattice in which a bond is present
with probability p. Macroscopic transport (i.e., the abili-
ty of a particle to diffuse from one boundary of the sys-
tem to another) requires that p be greater than p„ the
percolation threshold of the lattice; p, =1 in one dimen-
sion, and depends on the lattice structure in higher di-
mensions. When ~& ao, macroscopic transport will be
possible for any p. An "effective" diffusion constant D,ff
can be defined by D,tt=lim, (r (t))/t, provided the
limit exists, where r (t) is the distance from the origin at
time t of a particle that starts at the origin at t=O; D,ff
will depend on p and ~.

This problem has been analyzed in previous treatments
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that used effective-medium theories for calculating D,~
[1,9—15]. Qualitatively, their results agree with what one
expects intuitively: For rapid bond Auctuations (r small),

D,~ efFectively tracks p, while for larger ~ the dynamical
problem approaches the static percolation problem, with
an increasingly abrupt transition from low to high trans-
port coefficient at the appropriate percolation threshold.
However, although it is well known that effective medium
theories can fail quantitatively [16], apparently no simu-
lations have been performed up to now to check these re-
sults [17]. If effective medium approaches fail to give sa-
tisfactory quantitatiue agreement with simulations, a new
procedure that is capable of doing this is highly desirable,
if one ultimately wishes to compare laboratory experi-
ments (say, pressure and temperature studies of ligand
diffusion in myoglobin) with theory.

The purpose of this paper is to propose a new treat-
ment of the problem that does precisely that. It employs
simple renormalization group ideas and is extremely easy
to implement on a one-dimensional lattice. Furthermore,
we compare both this implementation and earlier
effective medium results with detailed numerical simula-
tions.

II. MODEL

To arrive at a better understanding of the processes
discussed in the Introduction, we will study a simplified
problem in discrete space and time. Consider site
diffusion on the lattice Z". At each discrete time step
(which occurs at unit intervals) the particle must attempt
to jurnp to a nearest-neighbor site. There is a priori an
equal probability of 1/2d for the particle to attempt to
jump to any one of its 2d neighboring sites. This decision
is made independently of the state of the bonds. Once the
particle attempts to jump in a given direction, the jump
will be successful if the relevant bond is present ("on").
If the bond is absent ("off"), the particle remains at its
starting site until the next time step, when again it at-
tempts to jump in some direction. Let b;J(n) denote the
state of the bond from site j to site i at time step n by
b;~(n) =0 for off and b;~(n) = 1 for on. Given a particular
bond history

(2.1)

the particle dynamics can easily be cast into the following
equation for the time evolution of the probability
P (i, nIB) that a random walker is at site i at time step n:

P(i, n+1IB)= g b, (n)P(J , n IB)"'1

j&Z
tj -i II=1

+P(i, nIB) g [1—b, (n)]
jEZ

)j—iI =1

(2.2)

Note that the sums are over nearest neighbors. Our case
is symmetric in the sense that b;J ( n ) =bi; ( n ) holds; how-
ever, Eq. (2.2) can be readily used for the case of directed

(1—p)+pv (1 —p)(1 —v)

p(1 —v) p+(1 —p)v (2.3)
P1O

where 0 +p ~ 1 is the probability that any given bond is
on and 0~ v& 1 is the correlation factor. Iterating the
transition matrix n times then gives the matrix of n-step
transition probabilities pb.&(n) to be

oo(n) poi(n)

pio(n) pii(n)

'n
poo po1

P10 P11

(1—p)+pv" (1—p)(1 —v")

p (1—v") p+(1 —p )v"

(2.4)

This shows that when v& 1 temporal correlations decay
as v". The Markov property allows us to consider the
bond dynamics to be a continuous time Poisson process
without loss of generality. In this case the correlation
time 0 & r & oo (in lattice temporal units) is determined by
v=exp( —1/r) and the mean lengths of time over which
a bond remains either on or off, denoted ~,„and ~,z, are
given by r,„=r/(1 —p) and r,z=r/p, respectively.
When v=1 (r= ~ ) the transition matrix (2.3) becomes
the identity matrix and the bonds become static. When
v=0 (r=0) the bonds are completely decorrelated from
one jumping time to the next. Because the bond process
is Markovian, the joint bond and jumping process is also
Markovian.

Previous work [11,18] has indicated that at long times
the behavior of this and related models is diffusive for
0 &p and v & 1 (also see Fig. 4), namely, it was found that
there exists a positive constant D,z such that the relation

(r (n)) =D,sn (2.5)

holds for large values of n. These results strongly sug-
gest, and we will henceforth assume, that this effective
difFusion coefficient exists and is defined by the limit

D,fr= lim —= lim —g IiI P(i, n),
7l ~ oo n ll ~ oo

i&Z
(2.6)

where P (i, n) is the probability of finding a particle at the

bonds, too. This jump process is Markovian when the
bond configuration is static because all attempts to jump
are independent of earlier events. However, the jump
process is not Markovian when the bonds fluctuate be-
cause the bond state affects the jumps.

We now impose an independent bond dynamics on the
bond variables b;J(n). Each bond independently Auctu-
ates on and off at random times as a two-state Markov
process that is identical for all bonds. The state of each
bond at the discrete jumping time is then governed by the
matrix of one-step transition probabilities pb. b, the proba-
bility that b; (n+1)=b' at time step n+1 given that
b,. (n) =b at time step n. This transition matrix has the
general form

poo po1
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site i at time step n given that it started at the origin at
time 0 and that

l il is the distance of site i from the origin.
Thus, P(i, n ) is the expected value of P(i, nlB) over all
bond histories B, where P(i, nlB) is computed for a given
B as the solution of (2.2) that satisfies the initial condition
P(i, OlB)=5(i). Hence 5( ) denotes the Kronecker delta
function centered at the origin. It is clear that the
P(i, n), and hence D,fr depend on (p, v), the parameters
associated with the ensemble of bond histories B. This
dependence will sometimes be indicated by writing
P(i, nip, v) and D,fr(p, v). While it may be that P(i, n) is
non-Gaussian [18], we will not address that question
here, but rather study only the determination of the
effective diffusion coefficient D,fr =D,fr(p, v ).

The relation of the D,s. defined above in (2.6) to a con-
tinuum diffusion description can be understood by con-
sidering the particle dynamics on macroscopic scales in
which the unit lattice spacing and unit time step incre-
ment have sizes designated 5x and 5t, respectively. For-
mally taking a inacroscopic limit in which 5x and 5t van-
ish while (5x ) /5t is held fixed, the macroscopic density
of particles p=p(t, x) will satisfy the diffusion equation

(5x )

2dnt
(2.7)

The continuum diffusion coef6cient is therefore propor-
tional to both D,z and the dimensional ratio (5x) /5t,
which is invariant under the spatiotemporal scale symme-
try (x ~ax, t +a r ) of—the equation.

The value of D,fr(p, v } may be easily determined in the
following four limiting cases. First, when p =1 the bonds
are always on and the particle dynamics reduces to free
diffusion with D,&=1. Because bonds being off can only
reduce the transport of particles, it follows that one must
generally have D,z 1, with inequality indicating devia-
tions from free diffusion. Second, when p =0 the bonds
are always off and clearly D,z =0. Third, when v=0 the
bonds fluctuate infinitely fast and the expected state of
the bonds is independent from time step to time step. In
that case it is easy to show that D,z=p. Finally, when
v=1 the problem becomes that of diffusion on a static,
randomly bond-diluted lattice. In this case, the behavior
will strongly depend on the diinension d of the lattice.
For d = 1 it is easily seen that

behavior of D,z as a function of p and v. We have
developed a renormalization group scheme that provides
a method for computing this, which will be the subject of
the following section.

III. RENORMALIZATION GROUP PROCEDURE

D„(p,v)—: =—g li l P(i, nip, v) .
(» (n))

n n
i Czd

(3.1)

The P(i, nip, v), and hence D„(p,v}, can be determined
explicitly for any value of n. This task is relatively easy
when n is small. For example, when n =1 a particle can
only be either moved to a nearest neighbor or left at the
origin. Because the probability of attempting to move in
a given direction is 1/2d while the probability of the
move being successful is p, one has

(3.2)

Renormalization group (RG) transformations are best
understood as transformations in the parameter space of
the models in question that are connected with a resca1-
ing of space and/or time, and that leave macroscopic
properties of the system invariant. For the fluctuating
bond lattices introduced in the preceding section the ex-
act macroscopic dynamics would be recovered, if we
could find an RG procedure that coarsens the spatial and
temporal units of the lattice so that the ratio (5x) /5t
remains fixed while the parameters p and v are
transformed so that the macroscopic bond fluctuation
correlation time ~5t and the effective diffusion coefficient
D,z are invariant. Of course, we cannot fix D,& exactly
because that would require prior knowledge of D,ff.
Rather, what we wi11 do is to match one of the approxi-
mations to D,fr from the limiting relation (2.6) for the fine
lattice with the appropriate approximations for the
coarse lattice. Upon iterating the resulting RG transfor-
mation to a fixed point we will obtain an approximation
to D,&- that will prove remarkably accurate in one dimen-
sion.

Let D„(p,v) denote the nth approximation to D,ff(p, v }
in (2.6), which has the form

D,s(p, 1)= . 1 if p=1,
0 otherwise . (2.&)

0 otherwise,

For d & 1 the behavior will be diffusive only if P &P„
where p, (1 is the bond percolation threshold for the lat-
tice in question, which depends on d. It is well known
that in this situation diffusion is anomalous for intermedi-
ate times and the limit (2.6) is approached only for very
long times; exactly at p, diffusion is anomalous for all
times [19,20].

In addition to the above limiting cases, it may be readi-
ly argued that (p, v)~D,&(p, v) must be an increasing
function of p and a decreasing function of v. However,
we would like to know quantitatively the full range of

which by (3.1) gives

1
D, (p, v)= g lil P(i, lip, v)= g p=p .

iGZ iGZ
fi/=1

(3.3)

Similarly, when n =2 a particle can only have moved to a
next-nearest neighbor, moved to a nearest neighbor, or
remain at the origin. By examining the likelihood of each
possible path a particle could take to end up at i after two
time steps, one can show
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2d p +(1—p) +—p(1 —p)v if lil=O,

1
p(1 —p)(2d —v) if lil =1

2d2

P(i, 2lp, v)= ' p' if lil =&2,
2d2

1

4d
p' if lil =2,

0 otherwise,

(3.4)

which by (3.1) gives

D2(p, v)= ,' g lil P—(i,2lp, v)=p — p(1 —p)v .
1

iGZ
(3.5)

D„(l,v)=1, D„(p,v) ~p,
with equality only for v=0 or p =0, 1 when n ) 1.
Second, as v is decreased the variation of D„(p,v) with n

becomes smaller and the convergence of (2.6) becomes
more rapid.

We now assume that an evaluation of D„(p,v) is given
for some fixed n ) 1 and introduce an n-step RG transfor-
mation of the model parameters (p, v) to new values
(p', v') that corresponds to a coarsening of the spatial and
temporal units of the lattice by factors of V n and n, re-
spectively. The n-step RG transformation is chosen to
match the bond n-step correlation factor and n th approx-
imation to D,z for the original system with the one-step
correlation factor and first approximation to D,z for the
new system. Specifically, this means that by (2.4),

v —v (3.7a)

thereby fixing the macroscopic bond fluctuation correla-
tion time, while by (3.3),

p'=D, (p', v')=D„(p, v) . (3.7b)

It is seen immediately that these equations already
represent the RG transformation equations for p' and v',
which introduce a fiow in the parameter space of (p, v)
(see Fig. 1). From the properties (3.6) of D„(p,v), one can
easily see that (p, v)=(0, 1) and (p, v)=(1.1) are unstable
fixed points, and v=0 is a line of stable fixed points under
the above RG transformation.

Our strategy for the approximation of D,s(p, v) is now
straightforward: given n ) 1, we start with the bare mod-
el parameter (p, v) and iterate the n-step RCx transforma-

It is already clear that the complexity of the calculation
of the P(i, nip, v) increases rapidly with n Lat.er we will
describe a method for carrying out these calculations for
general n.

Now we consider a few general properties of D„. First,
each D„(p,v) has some of the same limiting behavior en-
joyed by D,z, namely, that D„ is an increasing function of
p and a decreasing function of v such that

D„(p,O) =p, D„(0,v) =0,
(3.6)

FIG. 1. Renormalization group Row for d = 1; crosses denote
fixed points.

tion (3.7). Whenever (p, v) is not (0,1) or (1,1), this pro-
cess will approach a fixed point of the form (p*,O), in
which case we assign

DRG(p )
—D (

e ())—p
e (3.8)

This value for the effective diffusion coefficient is associ-
ated with all models that are connected by the same RG
trajectory. However, it will be far more accurate for
those values of v that are near zero, where the conver-
gence of (2.6) is rapid, rather than those near 1. This
strategy for computing D,z (p, v) is carried out in the
next section for a one-dimensional lattice and for
different values of n, and the results are analyzed and
compared with simulations.

IV. RG I OR A ONE-DIMENSIONAL LATTICE

P (O, n) =1—2 g P(i, n), (4.1)

but this is not necessary because of its vanishing contri-

We now specialize the RG procedure to a one-
dimensional lattice, deriving the two-, three-, and four-
step RG transformations. In the next section we will
demonstrate that the almost trivial two-step renorrnaliza-
tion given below is sufficient to give very good agreement
with numerical simulations, better in fact than effective
medium theories, which require considerably more work.
We will improve upon this agreement by continuing to
the three- and four-step renormalization. It should be
noted that the number of terms, and hence the labor re-
quired to compute the RG transformation, increases ex-
ponentially with the number of steps used.

The n-step renorrnalization requires knowledge of
D„(p,v), which is computed from the P(i, nip, v) by for-
mula (3.1). For the one-dimensional problem the i runs
over Z. Fixing (p, v) and noting the general symmetry
P( —i, n)=P(i, n), the probabilities P(i, n) need only be
computed for i =1, . . . , n. Of course, the probability
P (0, n) an be determined from the others by the relation
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bution to (3.1). Below, we will use the two-step case to il-
lustrate how the P(i, n) can be calculated using a di-
agrammatic technique to classify the various possible
paths.

Although it is not necessary for this calculation, the di-
agrammatic method introduced here for counting parti-
cle paths is helpful when more extensive computations
are required. The diagrams we use are a shorthand
method for collecting related terms. Consider the dia-
gram shown in Fig. 2. Each level downward corresponds
to a new increment of time. At the top level there is only
one site shown, indicating that at time I =0 the particle
is at the origin; one level down (m =1) three sites are
shown, indicating that the particle can be at sites —1, 0,
or 1; and two levels down (m =2) five sites are shown
(i = —2 through i =2, inclusively). Our diagrams then
trace possible particle paths, with the understanding that
at time zero the particle starts at the origin.

All two-step paths are indicated in diagrams (a f) of-
Fig. 3. In addition to P(2, 2) and P(1,2), we will com-
pute the probability P(0, 2) for illustrative purposes.
When the final position of the particle is at site i the con-
tribution of each diagram to the calculation of P(i, 2) is
as follows.

i =2 (diagram a). The particle goes right twice (which
has a probabilistic weight of —,'p ).

i =1 (diagram b). There are two possibilities for this
diagram: the particle first fails to go right and then goes
right [which has weight —,'(1—p)pio]; the particle first
fails to go left and then goes right [weight —,

' (1—p)p]. The
total weight for this diagram is —,'(1 —p)(p, o+p ).

i =1 (diagram c). There are two possibilities for this
diagram: the particle first goes right and then fails to go
left (weight —,'ppoi); the particle first goes right and then
fails to go right again [weight —,'p(1 —p)]. The total
weight for this diagram is —,'p(1 —p +poi ).

i =0 (diagram d). The particle first goes right and then
goes left (weight —,'pp» ).

i =0 (diagram e). The particle first goes left and then
goes right (weight —,'pp» ).

i =0. (diagram f). There are four possibilities for this
diagram: the particle fails to go right twice [weight
—,'(1—p)poo]; the particle fails to go left twice [weight
—,'(1 —p)poo]; the particle first fails to go right and then
fails to go left [weight —,'(1 —p) ]; the particle first fails to
go left and then fails to go right [weight —,'(1 —p) ]. The
total weight for this diagram is —,'(1—p)(1 —

p+poo ).

Summing the weights of the appropriate diagrams and
eliminating the transition probabilities pb b using
definition (2.3) then gives

0 ~ ~ ~ ~
FIG. 2. Nodal tree for n =2.

4 ~ ~ ~ ~ ~ II ~

4 4 ~ ~
~ i& 4

4 4 i& ~ ~

FIG. 3. Diagrams a f showi—ng all the possible paths ending
ati =2, 1, 0.

P (2, 2 ip, v) —
—,'p

P (1,21p, v) =-,'p ( I —p)(2 —v),
P (0,2~p, v) =

—,'p +(1—p) +p(1 —p)v,

(4.2)

which agrees with (3.4) when d =1. The verification of
(4.1) by these probabilities provides a useful check of the
calculation. Using the probabilities (4.2) to evaluate the
second approximation to D,s by (3.1) then yields

D2(p, v) =P (1,2~p, v)+4P (2, 2ip, v)

=p —
—,'p(1 —p)v . (4.3)

The third and fourth approximations to D,z are t:hen
found by formula (3.1) to be

The approximate effective diffusion constant D,z is then
found by iterating the two-step RCr transformation (3.7)'.

In particular, it is interesting to note that when v=1 this
procedure recovers (2.8) exactly.

A better value of D,z should be obtained when the
RG transformation is based on a higher order approxi-
mation to D,z. Applying the above diagrammatic tech-
nique to compute all possible particle paths, for the
three-step case we found

P(3, 3~p, v)= —,'p

P(2,
13,p)v=1 p(1 —p)(3 —2v),

(4.4)
P(1,3~p, v)= —',p[p +4(l —p) ]—p(1 —p)(1 —2p)v

lp 2( 1 p)v2

while for the four-step case we found

(P4, 4ip, )v= —,',p

P(3,4lp, v) =-,'p'(1 —p)(4 —3v),
(4.5)

P (2,4ip, v) =—'p (6—12p +7p ) ——,'p (2—5p + 3p }v,

P(1,4ip, v)= —,'p(4 —12p+15p —7p )

—
—',p(4 —20p +31p —15p )v

—
—,'p (3—7p+4p )v

jp3( 1 p)v33p2( l p)2v4
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D, (p, v) =p ——',p(1 —p)v —
—,'p'(1 —p)v',

D4(p &)=P 'P(-1 P)& 'P —(1 P»
p)&3 & p2(1 p )2 4

(4.6) eff
0.8--

0.6--

Because the procedures to calculate these cases are essen-
tially no different from those for the two-step case, we
omit the details. The efFective difFusion constants are
again found by iterating the three-step and four-step RG
transformations (3.7).

04--

0.2--

0
0 0.2 0.4 0.6 0.8

V. COMPARISONS WITH MONTE CARLO
SIMULATIONS

Extensive Monte Carlo (MC) simulations of random
walks in a one-dimensional Auctuating bond system were
performed. We placed N noninteracting walkers ran-
domly on a chain of L sites connected by fiuctuating
bonds where periodic boundary conditions were em-
ployed. At each time step the state of each lattice bond
was updated in accordance with (2.3), then each walker
attempted a move to a neighboring site in a random
direction. The move was accepted if the bond connecting
the sites in question was on. This scheme corresponds to
the analytic model described in Sec. II. The simulation
was stopped when a walker reached a distance of L/2
from its starting point, in order to avoid problems due to
the toroidal topology introduced by the periodic bound-
ary conditions. For our simulations we usually chose
N =L walkers, so that each lattice site was occupied with
one walker on average. Averaging the square of the dis-
placements of these random walkers from their starting
positions over M runs provides us with averages over
walks as well as over bond fluctuations in computing
( r ( n ) ) . Typically the lattice size L employed was 10
and the number of runs M ranged from 10 to 100, de-
pending on the quality of the statistics. The results were
checked against invariance with respect to variations in
the parameters L, M, and N.

A typical result for the mean square displacement
( r (n) ) is shown in Fig. 4. The data can be described by

P

FIG. 5. Comparison of two-step (alternating lines), three-step
(dashed lines), and four-step (solid lines) RG results, and MC
simulations for D,ff vs p for v=0, 0.9 (circles), 0.99 (squares),
and 0.999 (triangles).

10

0eff 10

10-2

10-3

10

10
0.2 04 0.6 0.8

0.6
D -D ™i ~

eff ef f L ~
aim

eff p 4--

0.2--
I

~ ~
~ ~

0-i f-

~ .

FIG. 6. Same as Fig. 5, with D,ff on a logarithmic scale in or-
der to resolve the small p regime.

( r ( n ) ) =D,trn + r 0 [ 1 P( n )], — -0.2
0.2 0.6 0.8

where D,~ is the effective diffusion coefficient, ra is a re-
sidual mean square displacement, and P(n) is a—usually FIG. 7. Comparison of the relative error of the two-, three-,

and four-step RG results vs p; v=0.999.

3.5

~ r(n) ~ 3--

2.5-

i.5—

0.6
elm

Deff Deff

D 8 IIII p 4eff

0.2

-S~

~ l
~ & ~

I
k

~ ~a t g ~ ~
~ ~ I
k

0 5--
p HI-

50
I I I I I

ioo 150 200 250 300 350 400
n

-0.2
0.2 0.4 0.6

I

08 p 1

FICx. 4. Average mean square displacement ( r (n) ) vs n; pa-
rameters as indicated; the dotted line denotes the long-time
behavior, see (5.1).
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nonexponential —relaxation function with P(0)= 1 and
lim„„g(n )—+0.

In Fig. 5 the RG and MC simulation results for D,ff

are compared; since the small p regime cannot be
resolved readily when D,& is plotted linearly, the data are
replotted in Fig. 6 with a logarithmic scale for D,z. As
can be seen, already the two-step RG transformation
gives a reasonable agreement with the simulation results,
which is improved upon increasing the step size. In order
to give a more quantitative description of the agreement,
we have analyzed the relative error (D,z D',g—)/D s .
Figure 7 demonstrates the decrease of the relative error
with step size for v=0.999. However, as can be seen, the
convergence to zero error is rather slow. Surprisingly,
the relative error is largest (about 50%) for small values
of p, whereas the RG gives correct results for p =0. In
addition, Fig. 8 demonstrates that the relative error is
rather independent of v, particularly for small p.

It is interesting to compare these results with the pre-
diction of effective medium (EM) theories. These theories
are usually expressed in terms of the correlation time ~,
which is related to v by

= ln
1 1

(5.2)
7 v

We note that various EM approaches give somewhat
different predictions; e.g. , [15] predicts a scaling
D,z. ~ p /r for small p and large r, whereas [11]predicts
D,s ~p/r, in agreement with our MC simulations and
RG results. Therefore we choose to compare the results
of [11] with our simulations. The one-dimensional self-
consistency equation of [11]can be evaluated analytically
with the result

D,~ =1+2'(1—p) —V [1+2&(1—p) ] —p(2 —p) .

(5.3)

Note that this equation gives the correct results for
p =0, 1 and for r=0 [alternatively, for v=0 by (5.2)].
Figure 9 shows the relative error of this prediction for
D z with respect to our simulations. Notice that the EM
theory systematically underestimates the effective
diffusion coef5cient, the error increasing with ~, particu-
larly in the intermediate to large p regime, i.e., below the
percolation threshold in one dimension. Everywhere, the

relative error is larger even than that of the two-step RG
results.

VI. DISCUSSIQN

We have presented a renormalization group approach
to obtaining an approximate effective diffusion coefficient
for random walks on a fluctuating lattice. This procedure
was applied to a one-dimensional lattice, where it is rela-
tively simple to implement, and was found to be in good
quantitative agreement with Monte Carlo simulations.
The results can be improved by taking into account a
larger step size in the renormalization procedure. It
might be hoped that, e.g., using a multistep renormaliza-
tion scheme, the procedure presented could be modified
in order to account also for nondiffusive effects; see (5.1).

The application of this approach to higher
dimensions —two is already interesting —is straightfor-
ward, but requires much more calculation than the one-
dimensional problem considered above. In addition, a
problem of principle appears to arise: It is reasonable to
expect that, as v~1, one should be able to recover the
percolation limit. Specifically, as v —+1 while holding p
fixed, we expect that the limiting diffusion coe%cient as a
function of p should vanish for p (p, and be positive for
p &p, . This behavior should be rejected in a renormal-
ization group Aow like that sketched in Fig. 10. In par-
ticular, a nontrivial fixed point should arise at v=1 and
p =p, . However, from the general properties (3.6) of the
D„one can immediately conclude that such a fixed point
cannot arise for any finite n in our renormalization pro-
cedure. So, the best that can be hoped for is that the
proper behavior is approached as the number of steps in
the renormalization goes to infinity. In other words, be-
cause of the dimensional dependence ofp„one must take
enough steps in the renormalization procedure to "see"
the dimensionality of the lattice. The two-step procedure,
employed so successfully in one dimension, does not give
a very good approximation in two dimensions. However,
the analogue of the four-step procedure, which is the
minimum needed to see simple closed paths, begins to ex-
hibit the proper trend.
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